organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(Decane-1,10-diyl)dibenzimidazolium dichloride trihydrate

Jun-Ming Yi,^a Yun-Qian Zhang,^b* Sai-Feng Xue^b and Qian-Jiang Zhu^c

^aCenter for Research & Development of Fine Chemicals Guizhou University, Guiyang 550025, People's Republic of China, ^bKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ^cInstitute of Applied Chemistry Guizhou University, Guiyang 550025, People's Republic of China Correspondence e-mail: sci.yqzhang@gzu.edu.cn

Received 17 February 2008; accepted 6 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.089; data-to-parameter ratio = 15.8.

The organic cation in the title compound, $C_{24}H_{32}N_4^{2+}$. 2Cl⁻·3H₂O, is situated on an inversion centre. The cations, anions and water molecules are linked *via* N–H···O, N–H···Cl, O–H···O and O–H···Cl hydrogen bonds and C–H··· π interactions, forming a three-dimensional framework.

Related literature

For general background, see: Day & Arnold (2000); Day *et al.* (2002); Freeman *et al.* (1981); Kim *et al.* (2000); Wang & Joullie (1957).

Experimental

Crystal data

 $\begin{array}{l} C_{24}H_{32}N_4^{2+}\cdot 2CI^-\cdot 3H_2O\\ M_r = 501.48\\ \text{Triclinic, } P\overline{1}\\ a = 10.8482 \ (6) \ \text{\AA}\\ b = 11.5089 \ (6) \ \text{\AA}\\ c = 11.9503 \ (6) \ \text{\AA}\\ \alpha = 77.619 \ (2)^{\circ}\\ \beta = 71.501 \ (2)^{\circ} \end{array}$

 $\gamma = 76.030 (2)^{\circ}$ $V = 1357.58 (13) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 293 (2) K $0.29 \times 0.24 \times 0.16 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.926, T_{max} = 0.958$ 13250 measured reflections 4702 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 298 parameters $wR(F^2) = 0.089$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.22$ e Å $^{-3}$ 4702 reflections $\Delta \rho_{min} = -0.18$ e Å $^{-3}$

3802 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.024$

Table 1	
Hydrogen-bond geometry (Å, °)	

$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
0.86	1.88	2.7142 (19)	162
0.86	1.94	2.7500 (19)	157
0.86	1.88	2.7322 (18)	173
0.86	2.25	3.0823 (15)	163
0.87	2.25	3.1027 (13)	168
0.89	2.21	3.0804 (13)	166
0.97	1.96	2.8763 (18)	158
0.90	2.28	3.1703 (13)	170
0.93	2.20	3.0912 (13)	162
0.92	2.21	3.1229 (13)	172
0.97	3.17	3.847 (3)	128
0.97	2.92	3.863 (3)	165
	<i>D</i> -H 0.86 0.86 0.86 0.87 0.89 0.97 0.90 0.93 0.92 0.97 0.97	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.86 & 1.88 \\ 0.86 & 1.94 \\ 0.86 & 1.88 \\ 0.86 & 2.25 \\ 0.87 & 2.25 \\ 0.87 & 2.25 \\ 0.89 & 2.21 \\ 0.97 & 1.96 \\ 0.90 & 2.28 \\ 0.93 & 2.20 \\ 0.92 & 2.21 \\ 0.97 & 3.17 \\ 0.97 & 2.92 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y - 1, z; (iii) -x + 1, -y + 1, -z; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1. *Cg1*, *Cg2* are the centroids of the C1–C6 and C13–C18 benzene rings, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003), the International Collaborative Project of the Ministry of Science and Technology (No. 2007400108) and the Foundation of the Governor of Guizhou Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2079).

References

- Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Day, A. I. & Arnold, A. P. (2000). Patent No. WO 2000 068 232.
- Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. Engl. 41, 275–277.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7370.

Kim, J., Jung, I. S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, L. L. Y. & Joullie, M. M. (1957). J. Am. Chem. Soc. 79, 5706-5708.

Acta Cryst. (2008). E64, 0696 [doi:10.1107/S160053680800617X]

2,2'-(Decane-1,10-diyl)dibenzimidazolium dichloride trihydrate

J.-M. Yi, Y.-Q. Zhang, S.-F. Xue and Q.-J. Zhu

Comment

We prepared and present a new 'axle' polyaromatic compound (I) containing multiple functional groups that can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman *et al.*, 1981; Day & Arnold, 2000; Day *et al.*, 2002; Kim *et al.*, 2000).

The structure of I, $[C_{24}H_{32}N_4]^{2+} \cdot 2Cl^- \cdot 3(H_2O)$, contains two independent molecules, which occupy the center of symmetry positions in the middle of C12–C12ⁱ and C24–C24ⁱⁱ bonds, respectively (symmetry codes: (i) –*x* + 2, –*y* + 3, –*z*, (ii) –*x*, –*y*, –*z* + 2). The angle between the plane of the phenyl rings and the plane through C10, C11, C12, C12ⁱ, C11ⁱ, C10ⁱ chain is 86.74 (9) Å, and the plane through C22, C23, C24, C24ⁱⁱ, C23ⁱⁱ, C22ⁱⁱ chain is 89.26 (10) Å. The cations, anions and water molecules are linked *via* N–H···O, N–H···Cl, O–H···O, O–H···Cl hydrogen bonds and C—H··· π intreactions forming three–dimensional framework (see table, *Cg1*, *Cg2* are the centroid of the C1/C6–benzene ring and C13/C18–benzene ring, respectively).

Experimental

A solution of o-phenylenedimine (5.40 g, 0.05 mol) and 1,10-decanedicarboxylic acid (5.80 g, 0.025 mol) were reflux for 12 h in 70 ml of 4*M* HCl, the reaction mixture was cooled for one day and the crystals of **I** was removed by filtration and dried. The crystals of the title compound suitable for *X*-ray diffraction were obtained by dissolving in water and standing at room temperature after several days (Wang & Joullie, 1957). Yield: 25%.

Refinement

Water H atoms were located in a difference Fourier synthesis and refined in their as–found positions relative to O atoms with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. The molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

2,2'-(Decane-1,10-diyl)dibenzimidazolium dichloride trihydrate

Crystal data

$C_{24}H_{32}N_4^{2+}\cdot 2CI^-\cdot 3H_2O$	Z = 2
$M_r = 501.48$	$F_{000} = 536$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.227 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 10.8482 (6) Å	Cell parameters from 13250 reflections
b = 11.5089 (6) Å	$\theta = 1.8 - 25.0^{\circ}$
c = 11.9503 (6) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\alpha = 77.619 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 71.501 \ (2)^{\circ}$	Prism, colourless
$\gamma = 76.030 \ (2)^{\circ}$	$0.29\times0.24\times0.16~mm$
$V = 1357.58 (13) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	4702 independent reflections
Radiation source: Fine-focus sealed tube	3802 reflections with $I > 2\sigma(I)$
Monochromator: Graphite	$R_{\rm int} = 0.024$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -12 \rightarrow 12$
$T_{\min} = 0.926, \ T_{\max} = 0.958$	$k = -12 \rightarrow 13$
13250 measured reflections	$l = -11 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.089$ S = 1.064702 reflections 298 parameters Primary atom site location: Direct Secondary atom site location: Difmap Hydrogen site location: Geom H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.299P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³ Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between

s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.64008 (18)	0.65504 (16)	0.11143 (15)	0.0407 (4)
C2	0.6254 (2)	0.78026 (18)	0.09401 (19)	0.0572 (5)
H2	0.5447	0.8308	0.0923	0.069*
C3	0.7371 (2)	0.8257 (2)	0.07942 (19)	0.0624 (6)
H3	0.7317	0.9091	0.0668	0.075*
C4	0.8579 (2)	0.7500 (2)	0.08310 (17)	0.0570 (6)
H4	0.9307	0.7845	0.0729	0.068*
C5	0.87257 (19)	0.62624 (19)	0.10132 (16)	0.0487 (5)
Н5	0.9530	0.5759	0.1043	0.058*
C6	0.76037 (17)	0.58019 (16)	0.11513 (15)	0.0387 (4)
C7	0.61491 (17)	0.46486 (15)	0.13702 (15)	0.0364 (4)
C8	0.55400 (18)	0.35944 (16)	0.14626 (17)	0.0418 (4)
H8A	0.5851	0.3315	0.0693	0.050*
H8B	0.4589	0.3864	0.1634	0.050*
C9	0.58230 (18)	0.25312 (15)	0.24031 (15)	0.0392 (4)
H9A	0.5473	0.2783	0.3186	0.047*
H9B	0.6772	0.2260	0.2255	0.047*
C10	0.51925 (18)	0.14950 (16)	0.23773 (16)	0.0409 (4)
H10A	0.4243	0.1771	0.2548	0.049*
H10B	0.5514	0.1281	0.1579	0.049*
C11	0.54728 (18)	0.03713 (16)	0.32589 (16)	0.0415 (4)
H11A	0.6422	0.0092	0.3085	0.050*
H11B	0.5093	-0.0263	0.3148	0.050*
C12	0.49251 (16)	0.05731 (15)	0.45552 (15)	0.0384 (4)
H12A	0.5374	0.1144	0.4686	0.046*
H12B	0.3994	0.0935	0.4705	0.046*
C13	0.16012 (15)	-0.00823 (15)	0.50147 (15)	0.0340 (4)
C14	0.19499 (17)	-0.13242 (16)	0.50035 (18)	0.0430 (4)
H14	0.1875	-0.1877	0.5703	0.052*
C15	0.24119 (18)	-0.16880 (18)	0.38967 (19)	0.0484 (5)
H15	0.2662	-0.2511	0.3848	0.058*
C16	0.25169 (17)	-0.08601 (18)	0.28440 (18)	0.0463 (5)
H16	0.2826	-0.1148	0.2116	0.056*
C17	0.21752 (16)	0.03697 (17)	0.28543 (16)	0.0405 (4)
H17	0.2246	0.0921	0.2153	0.049*
C18	0.17194 (15)	0.07423 (15)	0.39687 (15)	0.0329 (4)
C19	0.09620 (15)	0.17706 (16)	0.55014 (15)	0.0353 (4)
C20	0.04445 (17)	0.27781 (17)	0.62225 (17)	0.0454 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H20A	0.0525	0.2469	0.7023	0.055*
H20B	-0.0489	0.3056	0.6283	0.055*
C21	0.11453 (17)	0.38577 (16)	0.57205 (17)	0.0436 (4)
H21A	0.1086	0.4154	0.4912	0.052*
H21B	0.0685	0.4502	0.6194	0.052*
C22	0.25918 (16)	0.35777 (15)	0.57035 (17)	0.0398 (4)
H22A	0.2659	0.3266	0.6507	0.048*
H22B	0.3064	0.2952	0.5210	0.048*
C23	0.32401 (18)	0.46815 (16)	0.52292 (18)	0.0463 (5)
H23A	0.2725	0.5324	0.5688	0.056*
H23B	0.3220	0.4959	0.4408	0.056*
C24	0.46640 (18)	0.44573 (17)	0.52768 (17)	0.0453 (5)
H24A	0.4678	0.4235	0.6103	0.054*
H24B	0.5167	0.3778	0.4864	0.054*
C11	0.18425 (5)	0.85742 (4)	0.02569 (4)	0.04826 (14)
Cl2	0.16011 (5)	0.39667 (4)	0.21933 (4)	0.05033 (15)
N1	0.55187 (14)	0.57926 (12)	0.12641 (13)	0.0397 (4)
H1	0.4698	0.6027	0.1285	0.048*
N2	0.73979 (14)	0.46237 (13)	0.13165 (13)	0.0400 (4)
H2A	0.7986	0.3979	0.1375	0.048*
N3	0.11251 (13)	0.06012 (13)	0.59441 (12)	0.0362 (3)
H3A	0.0962	0.0311	0.6691	0.043*
N4	0.13153 (13)	0.18871 (12)	0.43127 (12)	0.0355 (3)
H4A	0.1296	0.2562	0.3835	0.043*
O1W	0.95820 (12)	0.03649 (11)	0.16974 (10)	0.0452 (3)
H1WA	1.0290	-0.0060	0.1285	0.054*
H1WB	0.9039	0.0643	0.1235	0.054*
O3W	0.28364 (12)	0.62540 (11)	0.18261 (12)	0.0529 (4)
H3WA	0.2395	0.5627	0.1963	0.063*
H3WB	0.2443	0.6840	0.1315	0.063*
O2W	0.92820 (12)	0.28229 (11)	0.20533 (12)	0.0494 (3)
H2WA	0.9616	0.2021	0.1829	0.059*
H2WB	0.9970	0.3157	0.1996	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0453 (10)	0.0372 (10)	0.0372 (10)	-0.0113 (8)	-0.0083 (8)	-0.0014 (8)
C2	0.0637 (13)	0.0390 (12)	0.0617 (14)	-0.0091 (10)	-0.0123 (11)	-0.0012 (10)
C3	0.0850 (17)	0.0438 (12)	0.0578 (14)	-0.0296 (12)	-0.0094 (12)	-0.0023 (10)
C4	0.0653 (14)	0.0640 (14)	0.0463 (12)	-0.0362 (12)	-0.0062 (10)	-0.0053 (10)
C5	0.0473 (11)	0.0588 (13)	0.0423 (11)	-0.0208 (10)	-0.0090 (9)	-0.0059 (9)
C6	0.0433 (10)	0.0390 (10)	0.0324 (10)	-0.0116 (8)	-0.0085 (8)	-0.0016 (8)
C7	0.0371 (9)	0.0377 (10)	0.0343 (10)	-0.0082 (8)	-0.0114 (8)	-0.0013 (7)
C8	0.0403 (10)	0.0391 (10)	0.0481 (11)	-0.0069 (8)	-0.0169 (8)	-0.0044 (8)
C9	0.0433 (10)	0.0389 (10)	0.0368 (10)	-0.0119 (8)	-0.0108 (8)	-0.0044 (8)
C10	0.0404 (10)	0.0415 (10)	0.0437 (11)	-0.0131 (8)	-0.0119 (8)	-0.0062 (8)
C11	0.0398 (10)	0.0373 (10)	0.0492 (11)	-0.0105 (8)	-0.0119 (8)	-0.0079 (8)

C12	0.0334 (9)	0.0320 (9)	0.0507 (11)	-0.0080 (8)	-0.0123 (8)	-0.0050 (8)
C13	0.0280 (8)	0.0401 (10)	0.0370 (10)	-0.0090 (7)	-0.0113 (7)	-0.0061 (8)
C14	0.0382 (10)	0.0393 (11)	0.0549 (12)	-0.0098 (8)	-0.0197 (9)	-0.0012 (9)
C15	0.0408 (10)	0.0416 (11)	0.0704 (14)	-0.0061 (9)	-0.0215 (10)	-0.0174 (10)
C16	0.0375 (10)	0.0571 (13)	0.0533 (12)	-0.0097 (9)	-0.0144 (9)	-0.0235 (10)
C17	0.0351 (9)	0.0524 (12)	0.0382 (10)	-0.0133 (8)	-0.0123 (8)	-0.0068 (8)
C18	0.0266 (8)	0.0361 (10)	0.0392 (10)	-0.0091 (7)	-0.0113 (7)	-0.0058 (8)
C19	0.0247 (8)	0.0436 (11)	0.0397 (10)	-0.0099 (7)	-0.0085 (7)	-0.0080 (8)
C20	0.0326 (9)	0.0541 (12)	0.0511 (12)	-0.0083 (8)	-0.0063 (8)	-0.0192 (9)
C21	0.0388 (10)	0.0386 (10)	0.0543 (12)	-0.0002 (8)	-0.0137 (9)	-0.0163 (9)
C22	0.0382 (10)	0.0346 (10)	0.0471 (11)	-0.0055 (8)	-0.0121 (8)	-0.0087 (8)
C23	0.0490 (11)	0.0386 (11)	0.0537 (12)	-0.0111 (9)	-0.0149 (9)	-0.0084 (9)
C24	0.0477 (11)	0.0462 (11)	0.0463 (11)	-0.0153 (9)	-0.0126 (9)	-0.0093 (9)
C11	0.0498 (3)	0.0453 (3)	0.0464 (3)	0.0017 (2)	-0.0178 (2)	-0.0055 (2)
C12	0.0542 (3)	0.0429 (3)	0.0557 (3)	-0.0152 (2)	-0.0192 (2)	0.0017 (2)
N1	0.0358 (8)	0.0348 (9)	0.0464 (9)	-0.0034 (7)	-0.0143 (7)	-0.0009 (7)
N2	0.0367 (8)	0.0351 (8)	0.0469 (9)	-0.0047 (6)	-0.0129 (7)	-0.0037 (7)
N3	0.0331 (8)	0.0430 (9)	0.0337 (8)	-0.0114 (6)	-0.0105 (6)	-0.0015 (7)
N4	0.0336 (7)	0.0336 (8)	0.0386 (9)	-0.0086 (6)	-0.0103 (6)	-0.0012 (6)
O1W	0.0441 (7)	0.0501 (8)	0.0374 (7)	0.0007 (6)	-0.0125 (6)	-0.0075 (6)
O3W	0.0435 (7)	0.0373 (7)	0.0740 (10)	-0.0072 (6)	-0.0192 (7)	0.0034 (6)
O2W	0.0416 (7)	0.0412 (7)	0.0683 (9)	-0.0058 (6)	-0.0202 (6)	-0.0092 (6)

Geometric parameters (Å, °)

C1—C6	1.387 (3)	C15—C16	1.397 (3)
C1—C2	1.388 (3)	C15—H15	0.9300
C1—N1	1.391 (2)	C16—C17	1.376 (3)
C2—C3	1.380 (3)	С16—Н16	0.9300
С2—Н2	0.9300	C17—C18	1.388 (2)
C3—C4	1.396 (3)	С17—Н17	0.9300
С3—Н3	0.9300	C18—N4	1.391 (2)
C4—C5	1.372 (3)	C19—N3	1.327 (2)
C4—H4	0.9300	C19—N4	1.334 (2)
C5—C6	1.392 (2)	C19—C20	1.486 (2)
С5—Н5	0.9300	C20—C21	1.526 (2)
C6—N2	1.390 (2)	C20—H20A	0.9700
C7—N1	1.329 (2)	C20—H20B	0.9700
C7—N2	1.329 (2)	C21—C22	1.518 (2)
С7—С8	1.485 (2)	C21—H21A	0.9700
C8—C9	1.517 (2)	C21—H21B	0.9700
C8—H8A	0.9700	C22—C23	1.516 (2)
C8—H8B	0.9700	C22—H22A	0.9700
C9—C10	1.521 (2)	C22—H22B	0.9700
С9—Н9А	0.9700	C23—C24	1.521 (3)
С9—Н9В	0.9700	С23—Н23А	0.9700
C10—C11	1.518 (2)	С23—Н23В	0.9700
C10—H10A	0.9700	C24—C24 ⁱⁱ	1.520 (3)
C10—H10B	0.9700	C24—H24A	0.9700

C11—C12	1.520 (2)	C24—H24B	0.9700
C11—H11A	0.9700	N1—H1	0.8600
C11—H11B	0.9700	N2—H2A	0.8600
C12—C12 ⁱ	1.517 (3)	N3—H3A	0.8600
C12—H12A	0.9700	N4—H4A	0.8600
C12—H12B	0.9700	O1W—H1WA	0.8680
C13—C18	1.388 (2)	O1W—H1WB	0.8916
C13—C14	1.389 (2)	O3W—H3WA	0.9188
C13—N3	1.390 (2)	O3W—H3WB	0.9275
C14—C15	1.375 (3)	O2W—H2WA	0.9681
C14—H14	0.9300	O2W—H2WB	0.8971
C6—C1—C2	121.54 (18)	C16—C15—H15	119.0
C6—C1—N1	106.43 (15)	C17—C16—C15	121.84 (18)
C2	132.02 (18)	C17—C16—H16	119.1
C3—C2—C1	116.3 (2)	C15-C16-H16	119.1
С3—С2—Н2	121.8	C16—C17—C18	116.30 (17)
C1—C2—H2	121.8	С16—С17—Н17	121.8
C2—C3—C4	121.9 (2)	C18—C17—H17	121.8
С2—С3—Н3	119.0	C17—C18—C13	121.77 (16)
С4—С3—Н3	119.0	C17—C18—N4	131.94 (16)
C5—C4—C3	121.93 (19)	C13-C18-N4	106.29 (14)
C5—C4—H4	119.0	N3—C19—N4	108.88 (15)
C3—C4—H4	119.0	N3—C19—C20	125.13 (16)
C4—C5—C6	116.28 (19)	N4—C19—C20	125.99 (16)
C4—C5—H5	121.9	C19—C20—C21	114.39 (15)
С6—С5—Н5	121.9	C19—C20—H20A	108.7
C1—C6—N2	106.09 (15)	C21—C20—H20A	108.7
C1—C6—C5	121.99 (17)	C19—C20—H20B	108.7
N2—C6—C5	131.91 (17)	C21—C20—H20B	108.7
N1—C7—N2	109.12 (15)	H20A—C20—H20B	107.6
N1—C7—C8	123.98 (15)	C22—C21—C20	114.17 (15)
N2—C7—C8	126.82 (16)	C22—C21—H21A	108.7
C7—C8—C9	115.36 (15)	C20—C21—H21A	108.7
С7—С8—Н8А	108.4	C22—C21—H21B	108.7
С9—С8—Н8А	108.4	C20—C21—H21B	108.7
С7—С8—Н8В	108.4	H21A—C21—H21B	107.6
С9—С8—Н8В	108.4	C23—C22—C21	112.45 (15)
H8A—C8—H8B	107.5	C23—C22—H22A	109.1
C8—C9—C10	110.33 (14)	C21—C22—H22A	109.1
С8—С9—Н9А	109.6	С23—С22—Н22В	109.1
С10—С9—Н9А	109.6	C21—C22—H22B	109.1
С8—С9—Н9В	109.6	H22A—C22—H22B	107.8
С10—С9—Н9В	109.6	C22—C23—C24	114.00 (16)
Н9А—С9—Н9В	108.1	С22—С23—Н23А	108.8
C11—C10—C9	113.90 (14)	C24—C23—H23A	108.8
C11—C10—H10A	108.8	С22—С23—Н23В	108.8
С9—С10—Н10А	108.8	С24—С23—Н23В	108.8
C11—C10—H10B	108.8	H23A—C23—H23B	107.6

С9—С10—Н10В	108.8	C24 ⁱⁱ —C24—C23	113.7 (2)
H10A—C10—H10B	107.7	C24 ⁱⁱ —C24—H24A	108.8
C10-C11-C12	113.70 (15)	C23—C24—H24A	108.8
C10-C11-H11A	108.8	C24 ⁱⁱ —C24—H24B	108.8
C12—C11—H11A	108.8	C23—C24—H24B	108.8
C10-C11-H11B	108.8	H24A—C24—H24B	107.7
C12—C11—H11B	108.8	C7—N1—C1	109.03 (14)
H11A—C11—H11B	107.7	C7—N1—H1	125.5
C12 ⁱ —C12—C11	113.96 (18)	C1—N1—H1	125.5
C12 ⁱ —C12—H12A	108.8	C7—N2—C6	109.33 (15)
C11—C12—H12A	108.8	C7—N2—H2A	125.3
C12 ⁱ —C12—H12B	108.8	C6—N2—H2A	125.3
C11—C12—H12B	108.8	C19—N3—C13	109.52 (14)
H12A—C12—H12B	107.7	C19—N3—H3A	125.2
C18—C13—C14	121.89 (16)	C13—N3—H3A	125.2
C18—C13—N3	106.14 (14)	C19—N4—C18	109.17 (14)
C14—C13—N3	131.96 (16)	C19—N4—H4A	125.4
C15—C14—C13	116.09 (17)	C18—N4—H4A	125.4
C15—C14—H14	122.0	H1WA—O1W—H1WB	107.0
C13—C14—H14	122.0	H3WA—O3W—H3WB	103.3
C14—C15—C16	122.10 (18)	H2WA—O2W—H2WB	108.7
C14—C15—H15	119.0		
C6—C1—C2—C3	0.7 (3)	N3—C13—C18—C17	179.89 (14)
N1—C1—C2—C3	-178.45 (19)	C14—C13—C18—N4	-178.69 (14)
C1—C2—C3—C4	-0.6 (3)	N3-C13-C18-N4	0.28 (16)
C2—C3—C4—C5	0.1 (3)	N3—C19—C20—C21	140.24 (17)
C3—C4—C5—C6	0.4 (3)	N4—C19—C20—C21	-41.0 (2)
C2-C1-C6-N2	-179.04 (17)	C19—C20—C21—C22	-64.7 (2)
N1—C1—C6—N2	0.27 (19)	C20—C21—C22—C23	-178.49 (16)
C2—C1—C6—C5	-0.2 (3)	C21—C22—C23—C24	176.07 (16)
N1—C1—C6—C5	179.12 (16)	C22—C23—C24—C24 ⁱⁱ	176.07 (19)
C4—C5—C6—C1	-0.4 (3)	N2-C7-N1-C1	1.0 (2)
C4—C5—C6—N2	178.15 (18)	C8—C7—N1—C1	-175.79 (16)
N1—C7—C8—C9	-136.00 (18)	C6—C1—N1—C7	-0.79 (19)
N2—C7—C8—C9	47.8 (2)	C2-C1-N1-C7	178.4 (2)
C7—C8—C9—C10	-177.80 (16)	N1—C7—N2—C6	-0.9(2)
C8—C9—C10—C11	177.68 (15)	C8—C7—N2—C6	175.85 (16)
C9—C10—C11—C12	62.6 (2)	C1—C6—N2—C7	0.35 (19)
C10-C11-C12-C12 ⁱ	173.94 (17)	C5—C6—N2—C7	-178.35 (19)
C18—C13—C14—C15	-0.3 (2)	N4—C19—N3—C13	-0.13 (17)
N3—C13—C14—C15	-178.99 (16)	C20-C19-N3-C13	178.79 (15)
C13—C14—C15—C16	-0.4 (3)	C18—C13—N3—C19	-0.10 (17)
C14—C15—C16—C17	0.6 (3)	C14—C13—N3—C19	178.73 (17)
C15-C16-C17-C18	-0.1 (2)	N3-C19-N4-C18	0.31 (17)
C16—C17—C18—C13	-0.7 (2)	C20-C19-N4-C18	-178.60 (15)
C16—C17—C18—N4	178.80 (16)	C17—C18—N4—C19	-179 93 (17)
C14—C13—C18—C17	0.9 (2)	C13—C18—N4—C19	-0.37 (17)
	···· (=)		

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A			
N1—H1···O3W	0.86	1.88	2.7142 (19)	162			
N2—H2A···O2W	0.86	1.94	2.7500 (19)	157			
N3—H3A····O1W ⁱ	0.86	1.88	2.7322 (18)	173			
N4—H4A…Cl2	0.86	2.25	3.0823 (15)	163			
O1W—H1WA…Cl1 ⁱⁱⁱ	0.87	2.25	3.1027 (13)	168			
O1W—H1WB…Cl1 ^{iv}	0.89	2.21	3.0804 (13)	166			
O2W—H2WA…O1W	0.97	1.96	2.8763 (18)	158			
O2W—H2WB···Cl2 ^v	0.90	2.28	3.1703 (13)	170			
O3W—H3WB…Cl1	0.93	2.20	3.0912 (13)	162			
O3W—H3WA···Cl2	0.92	2.21	3.1229 (13)	172			
C11—H11B···Cg2	0.97	3.17	3.847 (3)	128			
C22—H22A····Cg1 ⁱⁱ	0.97	2.92	3.863 (3)	165			
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (iii) $x+1$, $y-1$, z ; (iv) $-x+1$, $-y+1$, $-z$; (v) $x+1$, y , z ; (ii) $-x+1$, $-y+1$, $-z+1$.							

sup-8

